Sintering and Pit Formation of Ni Particles Supported on a Thin TiO₂-SiO₂ Film

Several research groups indicated evidence of strong metal-support interactions (SMSI) in Ni/TiO2 systems from measurements of catalytic and chemisorptive properties (1-10). When Ni/TiO₂ samples are reduced in H₂ at temperatures above about 700 K, they markedly lose their adsorptive capacity for H₂ and CO and catalytic activity for certain reactions. In their recent paper, Ko and Wagner noted that when TiO₂ was added to SiO₂, supported Ni showed lower activities in ethane hydrogenolysis and H₂ chemisorption than that with Ni/ SiO₂, in particular, after reduction at 773 K (7). For Ni/SiO₂ and Ni/Al₂O₃ (11–13) as well as for other systems (14-17), certain treatments with O2 and H2 were recently found to induce some metal-support interactions leading to interesting morphological changes. An O₂ treatment produces pitted and horseshoe-shaped NiO particles and a cyclic O₂-H₂ treatment causes redispersion due to the splitting and/or spreading of Ni particles.

With regard with the above results, we intended to obtain information about Ni-TiO₂ interactions and the influence of TiO₂ additive on Ni/SiO₂ in H_2 , in O_2 , and under vacuum. For this we prepared a sample of Ni supported on a thin film such that a number of TiO₂ islands were dispersed on SiO₂ and we examined it by transmission electron microscopy (TEM). Our previous TEM studies revealed the effects of metalsupport interactions and temperature on the sintering and morphological characteristics of Ni particles for Ni/SiO2 together with Ni/Al_2O_3 and Ni/C (11, 18-20). To clarify the effect of TiO₂, therefore, it seems useful to compare previous results

for Ni/SiO₂ with those for Ni on SiO₂ and TiO₂ in the Ni/TiO₂-SiO₂ sample.

An amorphous SiO₂ film was prepared by the procedure used previously (8). A Ti film was deposited onto the SiO2 by vacuum evaporation and treated at 573 K in air for 2 h. under vacuum for 1 h, and in air at 773 K for about 2 h. The treatment at 773 K broke the Ti film into small islands. They became stable in about 2 h and were little changed by further heat treatment at 773 K or above (<950 K). Table 1 gives electron diffraction data and may show the islands to be a polycrystalline, anatase form of TiO₂. Ni was deposited onto this TiO2-SiO2 to a thickness of 1-2 nm by vacuum evaporation. Ni was uniformly dispersed over the surface of TiO₂ islands and SiO₂ substrate in the sample as prepared (Fig. 4a). The sample was (i) heat treated under vacuum in a Hitachi H-300 TEM and examined in situ or (ii) heat treated with H2 and O2 at 8 kPa in an electric furnace and then examined by the TEM at room temperature.

Electron micrographs of Ni/TiO₂-SiO₂ during heating under vacuum at 823 and 883 K are presented in Fig. 1, where the TiO₂ islands are seen to be darker than the SiO₂ substrate. The heat treatment produced larger Ni particles on TiO₂ than on SiO₂. Side view observations showed the Ni particles to be three-dimensional. It is evident from Fig. 1 that particle growth occurred on either TiO2 or SiO2 and particle and atomic migrations concurrently contributed to it. In Ni/SiO₂, however, particle migration was predominant at these temperatures as reported previously (8). Figure 2 shows changes in the diameter of Ni particles on either TiO₂ islands or SiO₂ substrate. The

TABLE 1

Lattice Spacings in Nanometers for TiO₂-SiO₂ and Ni/TiO₂-SiO₂ Samples from Electron Diffraction Patterns

TiO ₂ -SiO ₂	Ni/TiO ₂ -SiO ₂	Ni/TiO ₂ -SiO ₂
oxidized	reduced	oxidized
at 500°C	at 600°C	at 600°C
for 2 h	for 3.5 h	for 1 h
0.349a	0.358	0.299
0.239^{a}	0.329	0.238^{c}
0.190^{a}	0.217	0.222
0.169^{a}	0.203^{b}	0.209^c
0.1474	0.187	0.191
0.133^{a}	0.174	0.179
0.1244	0.164	0.162
	0.130^{b}	0.142^{c}
		0.123

^{a,b,c} Assigned to anatase TiO₂, Ni, and NiO, respectively.

effect of temperature was small for SiO₂ but it was significant for TiO₂, on which Ni particles grew rapidly at 883 K.

Furthermore, we prepared another support in which TiO₂ wholly covered the surface of SiO₂ and we examined the behavior of Ni on this TiO₂ overlayer. The thickness of the TiO₂ layer was roughly estimated to be larger than 10 nm, and its surface properties seemed to be little influenced directly by the presence of the SiO₂ underlayer. The characteristics of particle morphology and growth for the TiO₂ overlayer were found to be the same as observed for the TiO₂ islands in Ni/TiO₂-SiO₂ described above. The change in particle diameter at 873 and 973 K is shown in Fig. 3.

The above results demonstrate the support effect that Ni on TiO₂ is less stable and sinters more rapidly under vacuum than Ni on SiO₂, and this effect becomes more pronounced at higher temperatures. The effect may be due to differences in Ni-support interactions and in surface roughness between TiO₂ islands (uneven) and SiO₂ substrate (flat). In addition, the TiO₂ seemed to modify the SiO₂ substrate, resulting in the sintering mode for Ni on SiO₂ in TiO₂-SiO₂ being different from that on SiO₂ alone (8).

Next the influence of H₂ and O₂ was examined. When the Ni/TiO₂ (islands)-SiO₂ was treated with 8 kPa H₂ at 873 K, the TiO₂ was presumed to be reduced from the electron diffraction given in Table 1, although the phases present could not be identified. The H₂ treatment produced larger Ni particles on reduced TiO₂ than on SiO₂ as seen in Fig. 4b. These Ni particles were three-dimensional from side view observations. Previous works reported raftlike, flat particles as well as three-dimensional ones for a few metal-support systems (3, 4, 21-23). Mustard and Bartholomew first demonstrated such a particle morphology for Ni on high-surface-area TiO_2 and SiO_2 when reduced at 725 K (3). Smith et al. also noted raftlike Ni particles on $TiO_2(4)$. These authors believed that the flat particles were indicative of strong Nisupport interactions (3, 4).

Figure 3 shows the change of particle diameter for Ni/TiO₂ (overlayer)-SiO₂ in H₂ at 873 K, indicating little influence of H₂ on the rate of particle growth. The Ni particles were seen to grow by particle and atomic migrations. The characteristics of particle morphology and sintering in H₂ were similar to those under vacuum although the H₂ treatment probably reduced the TiO₂ (Table 1). It was previously confirmed that TiO₂ was reduced by H2 treatment above about 770 K and the significance of reduced species was discussed in terms of SMSI effects for TiO₂-supported metal catalysts (e.g., (10)). In the recent CAEM study of Dumesic et al., TiO₂ in a thin Ni/TiO₂ film sample was shown to be reduced to Ti₄O₇ at 1070 K (9). Furthermore, they observed the formation of pits in the support around Ni particles and this was ascribed to the attack of the particles onto the support. In our Ni/ TiO₂-SiO₂ sample reduced at 873 K, however, such a morphological change was not seen. The results of Ko and Wagner (7) cited above might partly be explained by the present result that the degree of dispersion of Ni on TiO₂ is lower than that on SiO₂.

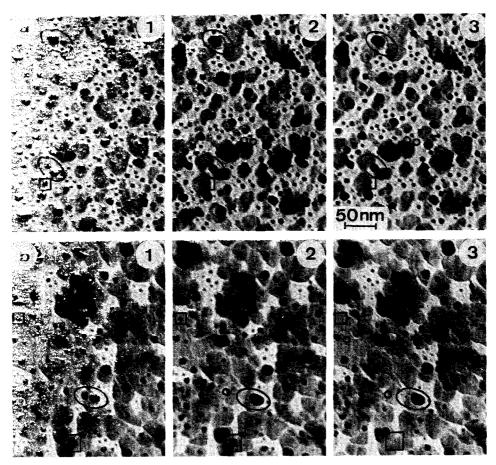


Fig. 1. Electron micrographs of Ni/TiO $_2$ -SiO $_2$ during heating under vacuum (a) at 823 K for (1) 40, (2) 77, (3) 120 min and (b) at 883 K for (1) 20, (2) 40, (3) 60 min. Typical changes are noted: The particles in ellipses show the growth by particle migration and coalescence. Those in squares contract and disappear at the same positions. Circles indicate the positions on which particles have been present before.

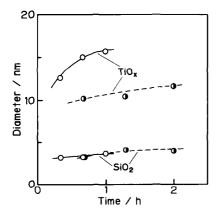


Fig. 2. Sauter-average diameter of Ni particles on TiO_2 islands and SiO_2 substrate in Ni/TiO_2 - SiO_2 heated under vacuum at 823 K (0) and 883 K (O).

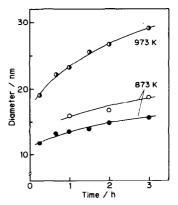


FIG. 3. Sauter-average diameter of Ni particles on TiO₂ overlayer on SiO₂ heated at 873 K (●) and 973 K (●) under vacuum and at 873 K in hydrogen (○).

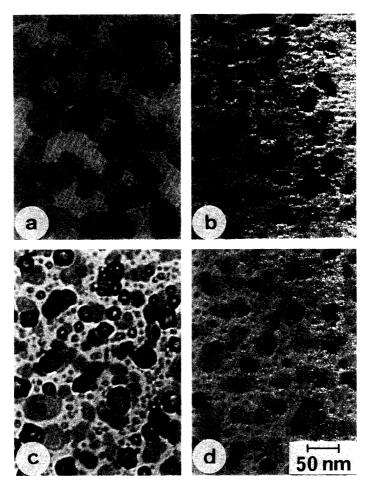


FIG. 4. Electron micrographs of Ni/TiO₂-SiO₂ (a) as prepared and after being heating (b) in H₂ at 873 K for 3 h; (c) then in O₂ at 673 K for 1 h; (d) again in H₂ at 873 K for 1 h.

Following the above H_2 treatment, the Ni/TiO₂ (islands, reduced)–SiO₂ was treated with O₂ at 673 K for 1 h. A micrograph in Fig. 4c clearly indicates that pits were formed in not only small particles on SiO_2 but also larger ones on reduced TiO_2 . It is interesting to see that some particles stretch over the uneven surface of a few islands adjacent to one another and a larger pit was formed in a larger particle. Electron diffraction showed these pitted particles to be NiO and further suggested that the reduced TiO2 was oxidized to some extent but not completely to TiO₂ (Table 1). When this sample was treated again with H₂ at 873 K for 1 h, the pits disappeared and the particles were reduced to Ni and again assumed the morphology that was seen before the oxidation as shown in Fig. 4d. The H₂ treatment seemed to reduce the oxidized TiO₂ but the phases of the resultant TiO₂ were not the same as those observed before the O₂ treatment.

These morphological changes of Ni particles with H₂ and O₂ treatments are quite similar to those for Ni/SiO₂ and Ni/Al₂O₃ observed previously (11-13). Therefore, the redispersion would take place by an oxidation-reduction cycling for Ni/TiO₂ as well if proper conditions could be used. A difference between metal-support and metal oxide-support interactions may be

responsible for both pit formation and redispersion and it is dependent on the metalsupport system considered. Indeed it was found that a higher reduction temperature of cyclic O₂-H₂ treatment was required for Ni/Al₂O₃ to redisperse than that required for Ni/SiO₂ (11). Current works in this and other laboratories on pit formation and redispersion in various systems during O₂ and H₂ treatments have produced suggestive information about the mechanism of these phenomena and metal-support interactions (11-17).

REFERENCES

- Vannice, M. A., and Garten, R. L., J. Catal. 56, 236 (1987).
- Bartholomew, C. H., Pannell, R. B., and Butler, J. L., J. Catal. 65, 335 (1980).
- Mustard, D. G., and Bartholomew, C. H., J. Catal. 67, 186 (1981).
- Smith, J. S., Thrower, P. A., and Vannice, M. A., J. Catal. 68, 270 (1981).
- Burch, R., and Flambard, A. R., J. Catal. 78, 389 (1982).
- Jiang, X. Z., Hayden, T. F., and Dumesic, J. A., J. Catal. 83, 168 (1983).
- Ko, E. I., and Wagner, N. J. J. Chem. Soc. Chem. Commun., 1274 (1984).
- de Bokx, P. K., Bonne, R. L. C., and Geus, J. W., Appl. Catal. 30, 33 (1987).
- Dumesic, J. A., Stevenson, S. A., Chludzinski, J. J., Sherwood R. D., and Baker, R. T. K., in "ACS Symposium Series No. 298" (R. T. K. Baker, S. J. Tauster, and J. A. Dumesic), p. 99. Amer. Chem. Soc.. Washington DC, 1985.
- Stevenson, S. A., Dumesic, J. A., Baker, R. T. K., and Ruckenstein, E. (Eds.), "Metal-Support Interactions in Catalysis, Sintering, and Redispersion." Van Nostrand Reinhold, New York, 1988.

- Nakayama, T., Arai, M., and Nishiyama, Y., J. Catal. 79, 497 (1983); 87, 108 (1984).
- Ruckenstein, E., and Lee, S. H., J. Catal. 86, 457 (1984).
- Lee, C., Schmidt, L. D., Moulder, J. F., and Rusch, T. W., J. Catal. 99, 472 (1986).
- Ruckenstein, E., and Chu, Y. F., J. Catal. 59, 109 (1979).
- Chen, J. J., and Ruckenstein, E., J. Catal. 69, 254 (1981); J. Phys. Chem. 85, 1606 (1981).
- Ruckenstein, E., and Chen, J. J., J. Colloid Interface Sci. 86, 1 (1982).
- Wang, T., and Schmidt, L. D., J. Catal. 70, 187 (1981).
- Arai, M., Ishikawa, T., and Nishiyama, Y., J. Phys. Chem. 86, 577 (1982).
- Arai, M., Ishikawa, T., Nakayama, T., and Nishiyama, Y., J. Colloid Interface Sci. 97, 254 (1984).
- Arai, M., and Nishiyama, Y., J. Colloid Interface Sci. 104, 175 (1985).
- Prestridge, E. B., Via, G. H., and Sinfelt, H. J., J. Catal. 50, 115 (1977).
- Yates, D. J. C., Murrell, L. L., and Prestridge, E. B., J. Catal. 57, 41 (1979).
- Baker, R. T. K., Prestridge, E. B., and Garten, R. L., J. Catal. 56, 390 (1979); 59, 293 (1979).

Masahiko Arai¹ Tetsunori Nakayama Yoshiyuki Nishiyama

Chemical Research Institute of Non-aqueous Solutions

Tohoku University, Katahira 2-1-1, Sendai 980, Japan

Received June 15, 1987; revised January 6, 1988

¹ To whom correspondence should be addressed.